Identifying Key Variables for Intrusion Detection Using Soft Computing Paradigms

نویسندگان

  • Srinivas Mukkamala
  • Andrew H. Sung
  • Ajith Abraham
چکیده

This paper concerns using learning machines for intrusion detection. Two classes of learning machines are studied: Artificial Neural Networks (ANNs) and Support Vector Machines (SVMs). We show that SVMs are superior to ANNs for intrusion detection in three critical respects: SVMs train, and run, an order of magnitude faster; SVMs scale much better; and SVMs give higher classification accuracy. We also address the related issue of ranking the importance of input features, which is itself a problem of great interest in modeling. Since elimination of the insignificant and/or useless inputs leads to a simplification of the problem and possibly faster and more accurate detection, feature selection is very important in intrusion detection. Two methods for feature ranking are presented: the first one is independent of the modeling tool, while the second method is specific to SVMs. The two methods are applied to identify the important features in the 1999 DARPA intrusion data. It is shown that the two methods produce results that are largely consistent. We present various experimental results that indicate that SVM-based intrusion detection using a reduced number of features can deliver enhanced or comparable performance. An SVM-based IDS for class-specific detection is thereby proposed. Finally, we also illustrate some of our current ongoing research work using neuro-fuzzy systems and linear genetic programming.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intrusion Detection Using Ensemble of Soft Computing Paradigms

Soft computing techniques are increasingly being used for problem solving. This paper addresses using ensemble approach of different soft computing techniques for intrusion detection. Due to increasing incidents of cyber attacks, building effective intrusion detection systems (IDSs) are essential for protecting information systems security, and yet it remains an elusive goal and a great challen...

متن کامل

Integrated Intrusion Detection System Using Soft Computing

Intrusion Detection systems are increasingly a key part of system defense. Various approaches to Intrusion Detection are currently being used but they are relatively ineffective. Among the several soft computing paradigms, we investigated genetic algorithms and neural networks to model fast and efficient Intrusion Detection Systems. With the feature selection process proposed it is possible to ...

متن کامل

Escalate Intrusion Detection using GA - NN

Intrusion Detection systems are increasingly a key part of system defense. Various approaches to Intrusion Detection are currently being used but they are relatively ineffective. Among the several soft computing paradigms, we investigated genetic algorithms and neural networks to model fast and efficient Intrusion Detection Systems. With the feature selection process proposed it is possible to ...

متن کامل

Intrusion detection using an ensemble of intelligent paradigms

Soft computing techniques are increasingly being used for problem solving. This paper addresses using an ensemble approach of different soft computing and hard computing techniques for intrusion detection. Due to increasing incidents of cyber attacks, building effective intrusion detection systems are essential for protecting information systems security, and yet it remains an elusive goal and ...

متن کامل

Assessment Methodology for Anomaly-Based Intrusion Detection in Cloud Computing

Cloud computing has become an attractive target for attackers as the mainstream technologies in the cloud, such as the virtualization and multitenancy, permit multiple users to utilize the same physical resource, thereby posing the so-called problem of internal facing security. Moreover, the traditional network-based intrusion detection systems (IDSs) are ineffective to be deployed in the cloud...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002